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Abstract—The bidomain equations represent the most com-
plete description of cardiac electrical activity. However, the
equations prove computationally burdensome as the resulting
system of equations has two entries per spatial node. This
paper examines the computational performance obtained by
decoupling the bidomain equations into two separate systems
of equations, an elliptic equation for the extracellular poten-
tial, and a parabolic equation for the transmembrane voltage.
Each set of equations was solved on different grids with differ-
ent time steps. For the elliptic problem, the performances of
direct and iterative solvers were compared. For the parabolic
equation, the interconnected cable method (ICCM) was com-
pared to the finite element method (FEM). Results were
obtained by simulating activity in a 3D slab of cardiac tis-
sue whose ionic currents were described by modified Beeler-
Reuter equations. It was found that the elliptic equation
solution dominated the calculation. Reducing the frequency
of solution and/or halving the spatial resolution resulted in
considerable speed up while maintaining a reasonable error.
Direct solvers were faster by a factor of 2–3 and the ICCM
was about twice as fast in solving the parabolic equation as
compared to the FEM. Both the elliptic and parabolic equa-
tions scaled linearly with the number of nodes.

Keywords— computer modeling, bidomain, cardiac, finite
element method

I. Introduction

ELECTRICAL shocks are the only known therapy for
hearts in fibrillation. Without intervention, death will

quickly result. The mechanisms underlying electrical defib-
rillation, however, still remain elusive. Electrical mapping
of the cardiac electrical activity during the delivery of de-
fibrillatory shocks is hindered by the high shock strength,
while optical mapping techniques are limited to surface mea-
surements. Modeling is therefore needed to help resolve the
events during defibrillation in the 3D volume of the heart.

The bidomain representation of cardiac tissue is the most
complete description of cardiac electrical activity[1]. It de-
scribes both the intracellular and extracellular potential
fields, linking them through membrane behavior. It has pre-
dicted the appearance of shock-induced virtual electrodes[2]
which were later confirmed experimentally[3]. The bidomain
equations are computationally expensive as they require two
unknowns for each spatial node, resulting in large matri-
ces which consume much memory and require long solution
times.

Besides this inherent computational burden in solving the
bidomain equations, simulating defibrillation in the heart is
also an intrinsically large problem. A piece of tissue large
enough to support fibrillation must be modeled, on the order
of centimeters, and because of the length constants involved,
it must be discretized on the order of hundreds of microm-
eters. Furthermore, the kinetics of the sodium gate impose

a time step on the order of microseconds while the window
of observation to determine the outcome of a shock is on
the order of hundreds of milliseconds. Thus, both spatial
and temporal considerations contribute to the size of the
problem.

Many techniques are available to solve the reaction-
diffusion equations describing cardiac electrical activity.
The InterConnected Cable Method (ICCM)[4], [5] is a com-
putationally efficient method that has been used in mon-
odomain simulations of three dimensional cardiac tissue
with fiber rotation[6]. It is based on decomposing the tissue
into a set of cables which may follow arbitrary trajectories,
but, by itself, is not suitable for solving the bidomain equa-
tions. The finite element method (FEM) allows modeling
of complex geometry and has been used to solve bidomain
problems on a whole rabbit heart[7], but is more computa-
tionally demanding than the ICCM.

This study examines several techniques to increase the
computational efficiency of solving the bidomain equations.
Benefits to be gained from recasting the bidomain equations
into decoupled elliptic and hyperbolic problems are exam-
ined. With the problems isolated, each is solved with dif-
ferent time steps and on different meshes in order to reduce
computational demand. By comparing results with the fully
coupled bidomain solution, the simulation parameters which
maximize computational speed while maintaining sufficient
accuracy are determined.

II. Methods

A. Governing Equations

The basic bidomain equations[1] relate the intracellular
potential, φi, to the extracellular potential, φe, through the
transmembrane current density, Im:

∇ · σ̄i∇φi = βIm − Itrans (1)
∇ · σ̄e∇φe = −βIm + Itrans − Ie (2)

Im = Cm
∂Vm
∂t

+ Iion (3)

where σ̄i and σ̄e are respectively the intracellular and extra-
cellular conductivity tensors, β is the surface to volume ra-
tio of the cardiac cells, Itrans is the transmembrane current
stimulus, Ie is an extracellular current stimulus, Cm is the
capacitance per unit area, Vm is the transmembrane volt-
age which is defined as φi − φe, and Iion is the current den-
sity flowing through the ionic channels. The Beeler-Reuter
Drouhard-Roberge model modified to handle large voltages
was used as the ionic model[8] in this study. This formula-
tion will be referred to as the coupled set of equations since
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the intracellular and extracellular potentials are solved si-
multaneously.

By adding Eqn. 1 and Eqn. 2 and using the definition of
Vm, the equations can be cast in a slightly different form
with Vm and φe as the independent variables.

∇ · (σ̄i + σ̄e)∇φe = −∇ · σ̄i∇Vm − Ie (4)
∇ · σ̄i∇Vm = −∇ · σ̄i∇φe + βIm − Itrans (5)

Equations 4 and 5 are decoupled and solved sequentially
as an elliptic problem (Eqn. 4) and a parabolic problem
(Eqn. 5). Since the two systems are now independent of
each other, they can be solved with different time steps and
at different spatial resolutions. This formulation will be
referred to as the decoupled system.

If either the extracellular electric field can be ignored, or,
the ratios of the longitudinal to transverse conductivities in
the intracellular and extracellular domains are equal, the
bidomain equations can be replaced with the monodomain
equation. This is Eqn. 5 with the intracellular conductivity
tensor replaced by the the monodomain conductivity ten-
sor, σ̄m, which is a function of the bidomain conductivity
tensors[9], σ̄m = σ̄i(σ̄i + σ̄e)−1σ̄e.

B. Solution Methods

To solve the fully coupled system (Eqn.’s 1 and 2) the
FEM was used based on a Galerkin formulation. In matrix
notation with a time step of ∆t, the resultant discretized
system is given by

[
Ke − κM κM
κM Ki − κM

] [
φt+1
e

φt+1
i

]
=

M
(
κ

[
vt

m

−vt
m

]
+ β

[
−ition

ition

]
−
[
ite − ittrans

ittrans

])
(6)

where κ = βCm/∆t, M is the FEM lumped mass matrix
and K is the FEM stiffness matrix. Both matrices were
computed using linear tetrahedral elements with the sub-
script on K denoting whether the matrix was created using
σ̄i(i) or σ̄e(e). Superscripts refer to the time step.

To solve the elliptic equation of the decoupled system
(Eqn. 4), an FEM approach was also used:

Ki+eφ
t
e = Kivt

m −Mite (7)

where the subscript of the stiffness matrix denotes that the
sum of the conductivity tensors was used.

To solve the parabolic problem of the decoupled system
(Eqn. 5), two different schemes were used, ICCM and FEM.
The ICCM solution utilized a semi-implicit time integration
on a one-dimensional linear grid to solve the particular so-
lution[4]. The FEM solution utilized a forward Euler time
integration:

vt+1
m = vt

m +
1
κ

(
M−1Ki

(
vt

m + φt
e

)
− βition + ittrans

)
(8)

ICCM Fine FEM Coarse FEM

Fig. 1. Grids used for different solution methods. All grids represent
the same space. They are shown in 2D for clarity.

C. Grid Generation

Grid generation began by constructing an ICCM grid as
has been described previously[5] (see Figure 1). Cables were
laid in sheets spaced 100 µm apart. Within each sheet, ca-
bles were parallel and all ran in the y direction. The domain
spanned by the cables was a right-angled hexahedron. Ca-
bles were then discretized into 100 µm long segments with
each segment connected to a segment in a neighboring ca-
ble through a gap junction that was represented by a fixed
resistance.

Two different FEM meshes were constructed from the ca-
bles, a fine mesh and a coarse mesh. To construct the fine
three-dimensional FEM mesh, the centers of the cable seg-
ments were used as nodes from which to construct first-order
tetrahedrons. To construct the coarse FEM mesh, every
other point in every other cable of every other layer was
used resulting in a mesh that was approximately one-eighth
the size of the finer mesh. The conductivity tensors in the
tetrahedral elements were defined by the cable directions in
the ICCM model.

The effect of using a coarse mesh for the elliptic equa-
tion and a fine mesh for the parabolic equation was tested.
Once a solution was obtained for φe on the coarse mesh,
interpolation was used to assign potential values at the fine
mesh nodes which were used in the solution of the parabolic
equation.

D. Matrix Solvers

To solve the coupled set of equations and the elliptic equa-
tion, both iterative and direct methods were used. While
direct methods are generally faster when repeatedly solv-
ing the same system of equations, they require much more
memory since performing a decomposition on a sparse ma-
trix preserves matrix bandwidth but fills in the zero entries
between bands[10]. One must therefore use iterative meth-
ods on large problems where performing a matrix decompo-
sition would exceed computer memory. The direct method
used here was an SGI (Mountain View, CA) supplied LDLT

decomposition, where L is a lower triangular matrix and D
is a diagonal matrix. After the decomposition, the system
was solved by forward and backward substitutions. A cus-



tom coded conjugate gradient method with an Incomplete
Cholesky decomposition preconditioner was used as the it-
erative solver[11].

All simulations were performed on an SGI Origin 2100
computer which had 350 MHz MIPS R12000 processors and
4 gigabytes of memory. Times given for simulations are CPU
times for a single processor.

III. Results

A. Solution Methods

The CPU time taken to simulate 25 ms of activity in
a rectangular 3D block of cardiac tissue with zero flux
boundary conditions was measured. The block measured
1.6×0.6×0.11 (x×y× z) cm and was composed of 108,031
intracellular nodes. Activity was initiated in one corner of
the block by applying a 2 ms suprathreshold transmembrane
stimulus. The activity propagated out with an ellipsoidal
wavefront which reached the x and y edges at approximately
25 ms. The CPU time to perform the simulation is given in
Table I for the various methods. ∆tE/∆tP refers to the ratio
of the time step used for the elliptic equation solve over the
time step used for the parabolic equation solve. Parabolic
solves were always performed with a time step of 10 µs.
Thus, φe was not necessarily updated as frequently as vm.
The value of ∞ corresponds to solving the monodomain
equation. Fine and Coarse refer to the discretization of the
FEM grid on which the elliptic equation was solved. Itera-
tive refers to solving the elliptic equation on a fine grid using
the conjugate gradient method.

TABLE I

CPU time to simulate 25 ms for various methods.

Method ∆tE/∆tP Fine Coarse Iterative

1 3989.67 941.20 8517.56
2 2270.54 796.63 5909.88

ICCM 4 1396.46 629.02 4115.56
10 878.25 602.41 2761.32
∞ 398.42 - -
1 4868.44 1171.68 10071.34
2 2515.26 979.92 7111.40

FEM 4 1643.83 884.71 5018.22
10 1123.82 819.91 3404.27
∞ 757.88 - -

Coupled - 13489.57 - 65867.97

Solving the coupled equation was much slower than solv-
ing the decoupled system. The ICCM method was ap-
proximately twice as fast as the FEM method in solving
the parabolic problem. An iterative solver was slightly
more than twice as slow to solve the elliptic problem at
a ∆tE/∆tP of one and became three times as slow when
∆tE/∆tP was ten. This was due to the larger change in
φe when computed less often, thereby requiring more itera-
tions for convergence. Increasing ∆tE/∆tP from one to ten
increased the average number of iterations per elliptic solve
from 52 to 94.
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Fig. 2. Time spent in the parabolic solution for a 25 ms long sim-
ulation as a function of problem size. The size of the problem
was increased by increasing the number of layers (#layers) or by
increasing the size of each layer (layer size).

The elliptic solve was the most costly part of the solution.
Reducing the number of times that the elliptic equation is
solved (increasing ∆tE/∆tP ) or reducing the size of the el-
liptic problem (using a coarse grid) greatly decreased the
simulation time. Monodomain solutions were obviously the
quickest.

B. Problem Size

The dependence of simulation time on problem size was
next ascertained. The problem size was varied in two dif-
ferent manners. The first manner was to increase the z di-
mension which simply increased the number of layers in the
block. This resulted in an increase in the number of nodes
while preserving the bandwidth of any matrices. The second
method involved scaling the size of each layer in the x and
y directions by the same factor while keeping the number
of layers constant. This method resulted in matrices whose
bandwidth increased with the scaling factor. The effect of
problem size was broken down into the effect on the time of
the parabolic solution (Fig. 2) and the effect on the time of
the elliptical solution for a coarse gird (Fig. 3).

The ICCM method was about twice as fast as the FEM
method in solving the parabolic equation. The ICCM
method scaled linearly with problem size, regardless of how
the problem size was increased. The curves for the ICCM
method were on top of each other since bandwidth is not a
consideration for this method.

The FEM showed a linear increase in CPU time with
problem size. At the smaller sizes, the manner in which the
problem was increased in size did not affect the computation
time. However, for very large problems, more than 200,000
nodes, increasing the layer size caused a larger increase in
computation time compared to an increase in the number
of layers.

The effect of increasing the problem size for the ellipti-
cal problem was similar to the one obtained for the FEM
parabolic solve. The manner in which the size was increased
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Fig. 3. Time spent solving the elliptic equation in a simulation of 25 as
a function of problem size. The number of nodes in the model was
increased by either increasing the number of layers in the model
or by increasing the size of each layer.

was only significant for very large problems.

IV. Discussion

This paper analyzed the time to compute a simulation us-
ing the bidomain model for various methods and techniques.
Solving the decoupled system of the bidomain equations is
computationally advantageous. By splitting the problem
into two, each part can be solved independently. This split-
ting leads to two smaller problems whose total work is less
than that required to solve the coupled system. Further-
more, there is a large savings in memory since the matrices
to be constructed are much smaller.

In splitting the bidomain equations into two parts, it was
found that the elliptic equation was much more costly to
solve than the parabolic equation. Thus, computational
speed was increased by a combination of solving the elliptic
problem on a grid with coarser discretization or by solving
this equation less often than the parabolic equation. Us-
ing a coarse grid had a similar speedup to decreasing the
frequency at which the elliptic equation was solved to one
tenth. Performing the elliptic solve at less than this fre-
quency lead to large errors in computation. Combining a
coarse grid with periodic elliptical solves only increased the
performance marginally beyond a ∆tE/∆tP value of 4.

The ICCM was found to be about twice as fast as the
FEM for solving the parabolic portion of the bidomain prob-
lem. However, when the elliptic portion and ionic compu-
tation are factored into the problem, the savings in compu-
tation time between using the FEM and ICCM reduces to
about 30%. Also, this savings of 30% will diminish if a more
detailed ionic model is used. The ionic model used here was
very simple, only having seven state variables, while recent
models have over 20[12]. The added complexity in setting
up the problem to utilize both an ICCM grid and FEM grid
may not be justified for an increase in performance of only
10%.

The direct solver for the elliptic elliptic was 2–3 times
faster than the iterative solver. It is therefore only reason-
able to use the iterative solver if memory is an issue and
the decomposed matrix does not fit into memory. A decom-
posed sparse matrix can have 10–20 times as many nonzero
entries as the original matrix due to fill in. This an addi-
tional reason to solve the elliptic equation on a coarse FEM
grid since memory for an LDLT decomposition will be re-
duced by a factor of eight.

V. Conclusions

Decoupling the bidomain equations into an elliptic and
parabolic equation offer computational advantages which
can be exploited to solve much larger problems in much less
time. The elliptic problem was computationally more ex-
pensive as well as requiring more memory. CPU times were
greatly reduced by solving it on a coarser spatial grid and at
fewer instances in time while keeping errors within reason-
able bounds. For solving the parabolic problem, the ICCM
was approximately twice as fast as the FEM. Due to the
sparsity of the problem, both the elliptic and parabolic prob-
lems scaled linearly with problem size. Finally, for problems
which fit into memory, direct methods are two to three times
faster than iterative methods.
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